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i INTRODUCTION

Control of multivariable systems traditionally has been oriented towards meeting require-
ments of system stability, insensitivity to plant variations, rejection of disturbances, steady
state accuracy, and transient performance.

Recently, research has concentrated on the disturbance-rejection problem, and on sensi-
tivity with respeci to large plant deviations. The disturbance-rejection problem has been
formulated as a worst-case design problem, starting from the classical “game against na-
ture” work, where such a formulation is explicit, through the more recent work on H.-
norm optimization formulation, where its presence is implicit. Alternatively, minimization
of a frequency-weighted K -norm is an appropriate problem formulation for achieving im-
proved robustness of system performance to structured and unstructured plant variations.
Frequency-domain-vased results on the H,, optimal and suboptimal solutions have led, how-
ever, to the conclusion that the required controllers are of order higher than the plant. The
recent return to the minimax formulations of the disturbance-rejection problem in the time
domain has shown that H.-norm optimal (and suboptimal) solutions exist in the form of
state-feedback and if controls are restricted to output-feedback, in the form of a full-order
(same as the plant) observer with modified plant matrix. A complete set of the necessary
and sufficient conditions for H-norm controllers expressed via the appropriate Algebraic
Riccati Equations (AREs) appears in [1] while earlier work on the connection between the
ARE and the H,, norm optimization problem leading to these results can be found in [2].
The recent paper [3], reviews the roots and history of the worst case, i.e., minmax, approach
to disturbance rejection. These results have shown that the rich theory on the structure and
properties of the solutions to the ARE, coupled with the properties of the related Riccati
operator and the Riccati inequality, provide extremely useful and fruitful tools for consider-
ation of the classical problems in design of multivariable systems as well as the consideration
of important new problems.

The research reported herein has concentrated on the development of design methodolo-

gies to meet simultaneously several diverse requirements including transient performance,



disturbance rejection, robustness, and reliability, using the following classes of admissible

controllers:

e low-order controllers; the goal here is to satisfy the basic performance, disturbance-

rejection, and robustness requirements,

o full-order output-feedback controllers, of the same order as the plant; the goal here is to
improve the reliability of the system by designing controllers capable of withstanding

outages of sensors and actuators, without loosing stability or increasing the H, norm

bound;

e output-feedback controllers for decentralized systems; the goal here is to meet require-
ments associated with transient performance, disturbance rejection and reliability using

a decentralized control structure.

The presentation is organized with respect to the classes of admissible controllers. Sec-
tion 2 and 3 deal mainly with topics related to design of low order controllers. Sections 4,
5, and 6 deal mainly with topics related to state-feedback and full-order output feedback-
controllers.

The design methodologies we have developed are based on:

e Projective controls, which provide a parametrized family of low-order controllers that
guarantee certain performances specifi-ations are met and possess free parameters to

be used to meet additional requirements.

e The Frobenius-Hankel (FH) norm as a computationally attractive measure of opti-
mality to meeting disturbance rejection and robustness requirements with low-order

projective controllers.

o The algebraic Riccati equation based characterization of H.,-norm-bounding con-

trollers, including

— state-feedback controllers to provide the reference solution for the projective con-

trollers, and




— full-order output-feedback controllers that meet robustness and reliability require-

ments, or solve the decentralized control problem.

The details of this research have been presented in the references listed below. and in
manuscripts now in prepzration. In the following we highlight the main contributions.

As indicated, projective controls represent a parametrized class of low-order controllers
which provide the means for a systematic two-phase design to achieve diverse design objec-
tives. In [4] a methodology was developed which applied projective controls to disturbance
attenuation for large flexible structures and other systems with many degrees of freedom.
The two-stage design first identifies and parametrizes all strictly proper controllers of given
order that retain the dominant system poles (i.e., dynamics) as defined by state-feedback
reference dynamics, and then selecis a particular controller by determining the free controller
parameters to minimize a measure of disturbance attenuation. The measure utilized is the
FH norm, the minimization of which is computationally attractive and also places a bound
on the H,,-norm. Restriction of the controllers to the class of projective controllers fixes the
system poles for transient behavior and disturbance attenuation while FH-norm minimiza-
tion then positions system zerns to enhance disturbance attenuation by low-order strictly
proper controllers. |

In [5] the two-stage design procedure was extended to design multiple control loops
for transient performance and disturbance attenuation using a low-order controller in each
loop. The H., optimal state-feedback solution was employed to specify and parametrize
all decentralized projective controllers that now create fixed modes at desired locations.
Then, using the FH-norm minimization approach, the {ree parameters in all controllers were
determined to place the zeroes and remaining poles to augment disturbance attenuation.

The procedures was further extended in [6] to design decentralized projective contro:s via
the H,,/FH-norm minimization procedure for the case when the controllers are restricted to
be strictly proper.

In (7] the FH-norm approach to disturbance rejection was applied to discrete-time sys-

tems. A new computational algorithm to minimize the FH norm for controllers of bounded




order was developed based on the use of the (discrete) algebraic Riccati equations which, in
the limit, reduce to the Lyapunov equations that characterize the necessary couditiocs. The
success of the algorithm is attributed to the expanded regions of existence of positive definite
solutions to the Riccati equations, as opposed to Liapunov equations. A nontrivial 5" order
example illustrates not only the convergence rate of the algorithm but also the nature of
the reduction of the FH norm, the H,, norm, the Trace norm and the Hankel norm at each

iteration. Also illustrated are bounds on H,, norm in terms of the values of the FH norm:

—RIC()len < 1G() e < 2VAIG( e

where n is the order of the closed-loop system. In [8] the above approach and the ARE-based
computational alguiithm were extended to cover in a vaified approach three general classes
of design probiems: disturbance rejection, tracking, and model reference design.

The recent results enabling the construction of H-norm-bounding controllers via the
algebraic Riccati equation has stimulated vigorous research into H, designs, to which we
have recently made a number of contributions. Our research has encompassed many issues
not treated previously by other researchers. These include the development of better bounds
on the H, -norm for established ARE-based designs [9], and the study of the properties of

the convex Riccati operator
R(X)=FTX + XF + ;IEXGGTX +HTH

and the associated algebraic Riccati inequality R(X) < 0 [10]. These properties were fun-
damental in rederiving in simple terms the state-feedback and output-feedback H..-norm-
Lounding controllers and extending the procedure to achieve robust stabilization with an
H,-norm bound in the presence of structured uncertainty [11]. Also a new parametrization
of all state-feedback controls and output-feedback controls that that guarartee a specified
H s -norm bound [12] has been obtained.

In (13], [14] the approach was extended to the design of controllers for decentralized
systems. It was shown that a controller of the same order as the system can be developed

for each control channel by constructing for each channel an observer in which the controls

4




associated with other channels are replaced by the estimates of these controls, as they are
defined by the state-feedback solution to the H.-norm-bounding problem, and the distur-
bance is replaced by the worst disturbance as described by the same state-feedback solution.
The observer gains for the controllers are determined by. the positive definite solution of a
large-dimensional (n x r, where r is the number of control channels) Riccati-like algebraic
equation.

The developed design methodology was extended to the problem of design of reliable
control systems [15]. This includes the design of control systems that possess the following

properties:
e stable controllers, i.e., strongly stable closed-loop system,
e robustness to the loss of a selected subset of measurements, and
e robustness to the loss of a selected subset of control inputs.

The essence of our approach stems from the fact that if X > 0 satisfies R(X) + P = 0,
where P > 0, then R(X) < 0 and consequently stability and H-norm bound can be guaran-
teed for the base case, while by judicious choice of P one can guarantee additional properties,
such as those mentioned above. In [16] the approach was extended to decentralized control
structures, and decentralized full order controllers reliable to loss of specified control channels
were developed.

The last topic presented in this report deals with H.-norm optimal and H.-norm-
bounding controls for discrete-time systems. Our contributions include the establishment of
a lower bound for the achievable H,,-norm which complements the known upper bound. We

have shown [17] that
[’\mAx(GTPG)]‘/2 < Ymin S

where P > 0 satisfies the Discrete ARE (DARE)

P = HTH + ATP(I + (BBT - —GGT)P|"' A
Y




subject to the convexity condition 42 — GTPG > 0. A study of the properties of the
discrete convex Riccati operator and the derivation of the design equations for the output-
feedback H.-norm-bounding controllers for discrete systems by utilizing a transformation
of the DARE to a Generalized (continuous) algebraic Riccati equation (GARE) are given
in [18]. A lower bound on the achievable H,-norm using output feedback controls was also
established.

The presentation of the material has been organized into five Sections. Sections 2 and 3
deal primarily with results related to the design of low-order controllers, and in particular
the FH norm and its utilization in design, and with projective controls as a means of defin-
ing a suitable parametrized class of low-order controllers. Section 4 establishes the approach
used in developing results for state-feedback control, full-order output-feedback control, and
decentralized control. Section 5 presents new results on the design of reliable control sys-
tems, for the centralized control problem as well as for decentralized control problems where
the problem of reliability with respect to a loss of certain control channels is resolved. Sec-
tion 6 presents extensions of the methodology. Problems considered include robustness to
structured parametric uncertainty in the plant, parametrization of classes of state-feedback
and output-feedback controls that guarantee an Hoo-norm bound, and the discrete Hoo-norm

optimization problem.




2 LOW-ORDER CONTROLLER DESIGN BASED
ON THE FH NORM

2.1 Motivation and Problem Formulation

In this report, we present methodologies for design of controllers to achieve closed-loop per-
formance, disturbance rejection, robustness, and reliability for multivariable time-invariant
linear systems. The systems will be represented by state-space models or by transfer func-
tions, as may be appropriate in a particular problem setting. In the remainder of this section
we specify the analytical representation, and the basic design problems considered in this
section.

We consider systems described by

f = Az+ Bu+ Guw,
Ye = Hz (2.1)
y = Cz+Du+tw

where z(t) € IR™ is the state, u(t) € IR™ is the control, wo(t) € IR is the disturbance,
y.(t) € R* is the controlled output, y(t) € IR? is the measured output, and w € IR is
measurement noise. In order to insure that the desired control is not achieved at the expense
of excessive use of control energy, the controlled output is typically expanded to include the

control vector. Thus we will here consider, in general, the controlled output to be

c Hz
z=[i]=[Kx]=ch. (2.2)

Two types of controls will be considered: Static output-feedback controls where the controller

is of the form
u = Ky, (2.3)

a particular case of which is the state-feedback controller if C = I, and dynamic output-

feedback control, where the controller is of the form

3

u

A+ By
C.k+ D.y.

(2.4)




By introducing the extended system describing the coupled dynamics (2.1) and (2.4), the
dynamic output-feedback control problem can be reduced to an equivalent static output-

feedback problem

:i,'e = éz,-{- B‘&'*‘G’U)o
Yee = I!z, + Ea (2.5)
ye = Cz.+ Dw
with
i =K.y, | (2.6)
where A0 B 0 c 0
x ~ -~
ol F N P I F R
(2.7)
5 N D .
H = [H 0], D=[ 0 ], E =[E 0],
and with the controller parameters packed into the equivalent gain matrix
D. C.
K. = [ B, A, ] . (2.8)

We now formulate a standard disturbancc-rejection problem via the H.-norm: Given

the closed-loop system
Fz 4+ Guw
Hz

where w is a disturbance input, z is a system output to be regulated, and the system matrix

z
z

(2.9)

F depends on the controller parameters, find a controller K(s) which guarantees closed-loop

stability and satisfies
K(s) = arg jnf T (K)o (2.10)

with T(K;s) = H(sI — F)™'G. The H, norm is defined as

[Tlloo = suP 0.0 {T(5w)}, (2.11)

where omax{-} denotes the maximum singular value. The definition (2.11) signifies that the
Ho, norm represents the largest size of a trzasfer-function matrix on the jw axis. (If T(s)
is a scalar transfer function, ||T||,, represents the worst-case amplification of a sinusoidal

disturbance input.)




An interpretation of the H,, norm in linear systems is that it is the worst-case ratio of

output energy to disturbance energy:

1Tl = sup 422, (2.12)
w€l, "w"2

Thus, an equivalent formulation of the disturbance-rejection problem (2.10) is to find a

controller satisfying
llzll2

K(s) = arg inf su 2.13
() & Kto) wers 1wz (2.13)

or A
K(s) = arg ,ig(l,f) sup{||z|lz : [lw|l2 < m}, (2.14)

which is a “minimax” problem in dynamic game theory. This reformulation really repre-
sents a return to the original formulations of global sensitivity problems as zero-sum games
between the control and “nature” (see for example [3]). This was explicitly recognized in
recent years, and the minimax formulation has since proved to be the proper vehicle for the
characterization and computation of H,-norm optimal solutions. It has also been demon-
strated that the optimal controllers can be implemented as state-feedback controllers, and
that optimal output-feedback controllers are of the same order as the plant.

A related formulation of the disturbance-rejection problem deals with determining sub-
optimal solutions, which are referred to here as H,-norm-bounding controls: Determine K

(or K.) such that the resulting system is stable and

1Tl <7, (2.15)

for selected v greater than the minimum achievable bound. This formulation has advantages
over the Hy-optimization problem, in that an optimal or near-optimal solution is often
characterized by high gains, high sensitivity to design-parameter variations, and excessive
concern with the worst disturbance.

For low-order controllers, the Ho-norm minimization problem and the norm-bounding
problem still do not have a computationally tractable solution. This prompts the consid-

eration of alternative formulations. We have developed the FH-norm formulation of the
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disturbance-rejection problem, and have developed computational algorithms to perform
FH-norm optimization. Solutions to the FH-norm optimization problem are easy to com-
pute, and avoid the high-gain and high-sensitivity problems of H..-optimal solutions. A
relation between the FH norm and the H,, norm allows quick determination of an H.-
norm bound once the FH-norm optimal solution is obtained. The FH-norm approach can
be applied t6 both continuous and discrete systems, and is particularly appealing when the
system is linear in the free design parameters. We, therefore, also develop appropriate linear
in the free parameter (LIFP) closed-loop systems representations. In Section 3 we proceed

to combine the FH-norm approach with the projective controls design methodology.

2.2 The Frobenius-Hankel Norm

Recently, Medani¢ and Perkins [19] introduced the use of the Frobenius-Hankel (FH)
norm, which is defined as the Frobenius norm on the Hankel singular values in disturbance
rejection and other control problems. The motivation for the choice of this norm is due to its
relationship to more widely known norms such as H, and H,, and its good computational
properties which make it suitable for use in optimization procedures.

In this section, the Frobenius-Hankel norm is defined and its properties explored. In
particular, both time-domain and frequency-domain physical interpretations will be given
for the FH norm, and a simple computational method will be developed for calculating the
FH norm. The FH norm will also be directly related to both the H, and H, norms. In
the following section, the FH norm will be used as the basis for a parameter-optimization
problem and applied to a model-reduction problem and an optimal controller problem.

The Hankel singular values of a stable system are defined as the singular values of the

Hankel operator associated with that system. (see [20].) If the system is described by

Az + Bu
Cz + Du, (2.16)

z
y

with A Hurwitz, then the Hankel singular values oy, ¢ € {1,2,...,n} can be computed as

o; = \{PQ}, (2.17)
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where P and @ satisfy
AP+ PAT + BBT =0 (2.18)

ATQ +QA+CTC =0. (2.19)

Note that P and Q are, respectively, the controllability and observability Grammians of the

system, and can be defined by
P= /°° 4 BBT A™ dt (2.20)
0

Q= / = AT CT CettdL. (2.21)
0

Definition 2.1. The Frobenius-Hankel norm of G(3s) € H; is

n 1/2
IG(s)llrr £ ZG?{G(S)}] : (2.22)

=1

where 0;{-} signifies the i*® Hankel singular value.

2.3 Properties of the FH Norm

The FH norm of a given system can be easily computed from its controllability and

observability grammians, P and Q.
Theorem 2.1. Given the system G(s) € H, and its controllability and observability gran.-
mians, P and Q respectively, then
IG)En = Tr {PQ}. (2.23)
Proof. From Definition 2.1,
IG()|IFy = Tr £2 (2.24)

where £ = diag (0, ...0,). Since there exists T nonsingular such that T-TPT-! = ¥ and
TQTT = £ [20]
IG(s)ll}y = Te (T-TTT)S(TT")E (2.25)

= Te (TTeT)(T'2T-T) (2.26)

11




= Tr PQ (2.27)
0O

Note that FH-norm computation via Theorem 2.1 involves the solution of the two Lya-
punov equatio.< for P and @), but avoids the eigenvalue computation necessary to determine
the individual Hankel singular values.

A time-domain interpretation of the FH norm is as follows:

Theorem 2.2. Given the system G(3) € H; and the impulse response of the system g(t),
then

IG) I = Tr [~ tg(t) g(t) dt. (2.28)
Proof. From Theorem 2.1,
IG(s)liFw = Tr PQ. (2.29)
By definitions (2.20) and (2.21), we obtain
T T
Tr PQ = lim Tr [ / eA* BBT AT dt] [ / eATTCTCeA dr], (2.30)
T—oo 0 0 '
which is equivalent to
T T 3 T
— T A(t47) A(t+7)
Tr PQ = Jim Tr /o /o [cert+nB] [ce*B]" dt ar. (2.31)

Let g(‘r) Ce?" B,

. T T T
Te PQ = Jim Tr /0 / gt +7)Tg(t + 1) dt dr (2.32)
Te PQ = Jim Te / / g(t)T g(t) dt dr. (2.33)
Let H(r) 2 [T+ g(t)Tg(t) dt.
. T
Tr PQ = lim Tr /0 H(r)dr. (2.34)
Integrating by parts,
. T T
Tr PQ = lim Tr |H(r)r|] - /0 rdH(r)] (2.35)
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T
Tr PQ = lim Tr [ /0 (T = t)g(t + T)Tg(t + T) + tg(t)Tg(t) dt| . (2.36)

In the limit as T — oo, g(t + T) — 0 and thus

Tr PQ= Tr /0 °° tg(t)Tg(t) dt. (2.37)

The following result provides frequency-domain properties of the FH norm.
Theorem 2.3. Given the system G(s) € H, and the frequency response of the system
G(jw) = G(8) |s=jw, then

1G() g = 51; [ ‘: Tr ﬁg—“’)cuw)- do. (2.38)

Proof Applying Parseval’s Theorem to (2.31) yields

16w = 5= [ Te Fleg®)Fla(®)" do (239)
- 2% f ‘: i Tr (%’-‘31) G(jw)" dw (2.40)
a

2.4 Relationships with Other Norms
The Frobenius-Hankel norm can be related to the H,, norm through the Hankel singular

values of the system.

Theorem 2.4. For a stable system

5(G(s)) < G()llr < 3 0:{Gls)) (241)

=1

and
—-lﬁncmum < 1G(3)leo < 2VANG(S) I (2.42)

Remark: It has been shown [20], that

5(G(s)) < IG(3)lleo < 23°0:(G(s)). (2.43)

i=1
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Proof Consider (2.41). Clearly, £ ,0? > 5%, while

(£ - (&) &)

= S0

=15=1
n

n n
doi+ D D 00 (2.44)
k=1 i=l =1

n e
>0

k=1 2
> |G(s)|IFx-

v

Consider now (2.42). We have Y o7 < n&* and so (1/vn)lIG(s)llFr < & < |G(5)]lo-
On the other hand, we have that gi:/=eln a value of the FH norm,
olo = ZU?=1 = ||G(3)||FH, ol = [0y 02 ..0,] (2.45)
i=1

the maximal value of the sum "%, o; is obtained by solving the maximization problem
min eTo, T =[11...1], (2.46)

subject to (2.45). This leads to the maximizer & = Ae where A must satisfy (2.45), producing
An = ||G(3)||%4- But then
Y 0; = eTa = AeTe = An = V/n||G(s)||Fh. (2.47)
i=1

For all other values of the ;, Y%, ¢ < /n||G(3)||[r# and so

=1

1G(8) 1o < 2303 < 2VAIG(3)] 7. (2.48)

i=1

o

The FH norm can aiso be related to the sensitivity of the H, norm to a shift of the

eigenvalues of the system along the real axis.

Theorem 2.5. Let the eigenvalues of the system G,(s) be given by A; = X; + a, then

LUGu)B| = 2G()n (249)

a=0
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Proof The shift in eigenvalues can be expressed by assuming A has the form

Ala) = A, + al.
Let
J = |G(s)|3 = Tr PCTC.
Then
J\ _ wpcte,
da a=0

where P, satisfies

AP, + P,AT +2P =0.
Let Q satisfy

QA+ ATQ+CTC =0

then using the properties of the trace, it can be shown that
Tr P,CTC =2 Tr PQ.

Thus

ﬂ =2 Tr PQ.
da

a=0

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

This expression may be useful in establishing robustness properties of the system.

2.4.1 Example

To illustrate the relationship between the various norm and the effect of their minimization

on the system response consider the system

. 0 1 1

T =1l_ao0 ’”+[0]“+[
ye = [1 0]z

y = [0 1]z

with control restricted to

u=—ky=-[0 k]z.
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It is then easily shown that

,_(tara o o
NG(s)llz = Sak , k3 =arg mn IGliz = 1+ o2
and
1 + a?)k? + 2a3k? + 202 . av?
Gl = LEEEL 2 Kby = arg mjn [Glew = — .
Moreover,
2 2 2
: _ a w? + k(1 + a?)
"G(s)"oo - J(w(k)a k) - mwa,'x{ (wz - 0)2 + kgwg
and so
o +2
TR, K < at oyt

IG()II% =

2 2 7
Fl+a) k22a+a\/a +2
a? a?+1

with w?(k) defined implicitely as satisfying the necessary condition
W+ 21+ a¥)?-6=0

and

§ = a?(a? +2) — (1 + a?)(k? — a)?

Because for 6 > 0, ||G(s)|| is unimodal and exhibits a maximum, and is monotonically

decreasing for § < 0, it is determined that

1+2a* - V1+a?
2 _ : 2 _ -
ks, = arg min I1G(s)lc = oVl tal .

The dependency of k2, k%, and k2, on a is depicted on Figure 2.1.
It is noted that as a — oo, all gains are bounded, so that high oscillation will result in
all cases. The reason is that consideration of the control as a1 additional controlled output

precludes the use of large gains. If the control is not weighted then one obtains

4+ a
2 _
loeg = X
k' + 202
”G(s)"%’H = 4k2q2
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control gains with the control weighted-in

1'4 ! v v T Y T Y T T

gain

0 2 e A i A i 1 . I Y

Figure 2.1: Optimal gains.

and \
2
2 _ w? + k
NG ()% = (w? — a)? + K2w?
From this follows
k2 = «a
kin = av?
3a
k2 = —
had 2

and the results are displayed in Figure 2.2. Thus, we see again, the characteristic property
that the FH norm optimal solution provides more damping than the LQ solution, but not
as much as the H,-norm optimal solution which, of course, reduces the peak of the gain
characteristic. In this case, for all values of a, the H,, norm solution guarantees a damping
ration § = f% = 0.6124, the FH norm solution guarantees { = ’? = 0.5946, which the H,

solution guarantees £ = 0.5.
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control gains with no weighting on the control

4 T T T T T T T Y T

gain

[=}
R
L
s

Figure 2.2: Optimal gains.
2.5 Frobenius-Hankel Norm Optimization

In this section, a common framework for solving optimal FH norm problems will be pre-
sented. Necessary conditions for an optimal solution wiil then be formulated and solution
methods for solving the necessary conditions will be proposed. In later sections, specific
problems will be solved under this framework, and in particular problems related to the

design of projective controls.

Let G(s) be a strictly proper system with transfer function
G(s) = C(8)(sI - A(8))"'B(6) (2.57)

parameterized by 6. The general method used to compute optimal FH norm solutions
involves determining the optimal values of the free parameters of the co.troller. For example,
in the case of the model-reduction problem, the parameters represent the reduced-order

system, i.e., § = ( A B,C, Ib) In the controller-synthesis problem, the parameters represent

18




the controller, i.e., 8§ = (A, B,,C., D.). The FH norm of G(3) can be computed as

J =Gty = Tr {PQ) (2.58)

where P and @ satisfy (2.18) and (2.19). The optimization problem is, thus, to find 8 such
that the criterion (2.58) is minimized subject to the constraints (2.18) and (2.19).
This constrained optimization problem can be converted to an unconstrained optimiza-

tion problem using Lagrange multipliers. The augmented criterion is given by
J= Tr {PQ + M(AP + PAT + BBT) + L(ATQ + QA + CTC)}. (2.59)

Using this approach, necessary conditions for an optimal solution are

aJ

T
p=AM+MA+Q=0 (2.60)
aJ T
30 = AL+ LAT+P=0 (2.61)
aJ T T
37 = AP+ PA" +BBT =0 (2.62)
0J =ATQ+QA+CTC =0 (2.63)
oM N '
aj 7 T T T
=5 = g5 Ir {2AT(MP +QL) + BTMB + CTCL} = 0. (2.64)

In general, these equations can not be solved for the optimal @ directly. However, iterative
methods may be applied to this problem.

A Gradient algorithm approach to the solution of this problem is to find the direction of
steepest descent and to take a step in that direction. The direction of steepest descent is in
the direction of the gradient with respect to ; the gradient of J with respect to 8 is given

by
dJ 8J a8JjdP aJ dQ aJdL 8J dM

W=t orwtogw torae Toman (2.65)

If P,Q, L, M satisfy (2.60-2.63), then
w0
a0 =30 (2.66)




The parameter update is given by

dJ
9,‘.“ = 0.’ - E-(-i-o-. (267)

Basic steps of the algorithm are given in Figure 2.3, for € fixed. This method has been used

1. Select 6, so that A(8,) is stable.

Let : = 1.

Solve Eqns. (2.60)-(2.63) for L, M, P and Q.
Calculate 6;,; from Eqns. (2.66) and (2.67).

ARl S

If the parameters have not converged, let : =7+ 1 and go to 2.

Figure 2.3: Gradient Algorithm.

in [4] to solve the FH optimization subproblem, associated with the decentralized control of
a large space structure using low-order controllers. The steepest decent algorithm results if
G is selected so that 6,4, is the minimum of J along the gradient direction.

An alternative approach, referred to here as “the Riccati approach”, [21,8] uses Riccati
equations instead of Lyapunov equations. The Riccati equations are constructed so that the
iterative solution converges to the solution of the Lyapunov equations.

The iterative equations are of the general form

ATMipy + Mgt A = My  RMipy + MiRMi + Q =0
ALy, + Li+1AT —LipgwRLiyy + LiRL; + P=0

APgy + Py AT — Py RPiy + PiRP: + BBT = 0 (2.68)
ATQiy1 + Qit1A — Qi1 RQi1 + QiRQ: + CTC =10
where §; is the solution of (2.67), or the solution of
aJ
= 0, (2.69)

if (2.69) can be solved. The second possibility occurs naturally in the discrete case and so

the algorithm will be discussed in Section 2.6 in greater detail. Note that if this iterative
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algorithm converges, it converges to the solution of the corresponding Lyapunov equations.
The Riccati approach has the important feature of being solvable for all stabilizable and
detectable systems. The Riccati approach should be used when ¢ is fixed, since an unstable
plant may then result at any given iteration. However, solving Riccati equations is more
time-consuming at each iteration than solving Lyapunov equations; therefore, the increased

assurance of convergence is obtained at the cost of greater computational burden.

2.5.1 Optimal model reduction

The disturbance-rejection problem is a useful paradigm for other problems, in particular for
the model-reference problem and model-reduction problem. In the model reduction problem,
given an n*"-order system

G(s) =C(sI - A'B+ D, (2.70)
the problem is to find a k-th order approximation

~ A

Gs)=C(sI-A)"'B+D (2.71)

that minimizes ||G(s) — G(3)||rx-

The error system as shown in Figure 2.4 is

G(s)

G(s) |

Figure 2.4: Model Reduction Problem.

E(s) = G(s) — G(s) = C.(s] - A.)'B, + D., (2.72)
where
A0 B ,
Ae=[0 A]’ B,=[B],C,=[C—C'], D.=D-D. (2.73)

21




In order for the error system to be strictly proper, i.e., that e(t) — 0 as t — oo, we
require D, = 0. This is satisfied by letting D=D.
The necessary conditions from (2.60)-(2.64) are:
aj
oL,

gi}d (2.74)
= ATM+MA.+Q=0

%
3% = AL+ LAT+P =0
and 2]
— = 2(MP+ QL) =0
232 = 2ng,; f M)::B) =0 (2.75)
3 .
7 2(—CL1;+CMy) =

The gradient steepest descent or Riccati algorithm can now be used essentially as described.

2.5.2 Disturbance rejection

Given the plant (2.1) controlled by the dynamic controller (2.4), the closed-loop system
reduces to (2.5)-(2.7), i.e.,

I
o &
X X
>

2 O

(2.76)

i

e O O e
tx»
CNS
o

with

. A0 B A C 0 5 D

O N P IR ) T
G
0

p=[E 0], C= [ A=1[H 0, 1‘{=[D° C°]. (2.78)

B. A,
In order for the closed-loop system to be strictly proper, we require D = 0. Thus one

restriction on the optimal solution is
ED.D =o. (2.79)
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P(s) |

C(s)

Figure 2.5: Plant with controller configuration for disturbance rejection.

The necessary conditions for an optimal solution are then

aJ
%
— = ATQ+QA+C7"C=0

g’}ff (2.80)
ol _ 4t i+0=

55 = AM+MAi+Q=0

aJ
oQ

= AP+ PAT+BBT =0

= AL4+LAT+P=0
and

3_1{; _ 2(BT(MP + QLT + BTM(C + BRD)DT + BT(ff + BRO)LOT).  (281)

Satisfying the condition ED.D = 0 leads to three special cases:
(i) Strictly Proper Controller (D, = 0)
(ii) Noise-Free Measurements (D = 0)
(iii) Cheap Control (E = 0)

Of course (2.79) can be satisfied in a combination of these three cases. This would imply
that some channels of the control would be strictly proper, some noise-free, and some with
cheap control.

If the measurement noise (DDT) is non-singular and the controlled outputs include a
non-singular control term (ETE), then the optimal controller must be strictly proper. This

case is handled by setting D. = 0 and removing it from the set of parameters to be optimized.
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Thus the necessary conditions for an optimal controller are (2.80) and

aJ .

o4 = AMP+QLin=0

- = 2(MP+QLuCT + MyB.DD”) =0 (2.82)
aﬁ‘C]— = 2[BT(MP + QL)u + ETECan] =0.

If the measurement outputs of the plant are noise-free, then D = 0 and the necessary
conditions for an optimal controller are (2.80) and

8J

0A,

;’; = 2[(MP + QL)uCT + (MyB. + My BD.)DDT] =0
) (2.83)

9 9BT(MP+ QL) =0
ac,
061; = 2[BT(MuBD. + M2B)DDT + BT(MP + QL)uCT] =0.

If, in addition the controller is non-dynamic, i.e., C(s) = D., then the closed-loop system

G(s) = (H + ED.C)(sI — A— BD.C)™'G. (2.84)

The necessary conditions for an optimal control are (2.80) and

A

.é‘?bj_. = BT(LP + QM)CT + D.CMCT = 0. (2.85)

2.5.3 Example

Given the plant

© _0.4335 —0.0118 —0.9231 —0.4643| 0.8854 —0.7382

—0.9160 —0.5185 —0.4110 —0.0779| 0.1747 1.5473

A|B] | -0.0414 —0.6085 —0.7507 —0.8901|—1.4939  0.8204
cTD | = | —04828 —0.0916 —0.2014 —09215]|—-1.1423 —1.5361 |»  (2:86)

00782 1.9938 —0.8140 —0.8819 0 —1.5443

0.1821 03387 1.6250 1.0326 0 0]

determine a second-order, proper, stabilizing controller K(s) which minimizes the FH norm

of the closed-loop system.
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To start the algorithm, an initial stabilizing controller is needed. Such a controller is

given by
-1 0 -0.0118
K(s) = [ 0 -1 l —0.0555 | . (2.87)
| 0.0846 —0.1728 | 0

The optimal controller was computed by implementing the steepest decent algorithm

using Matlab. Figure 2.6 shows the FH norm (G = B, H = C) at each iteration of the

FH Norm

Figure 2.6: Iteration history of FH Norm of System.

algorithm. The FH norm was reduced from its initial value of 84.9 down to 5.6. The optimal

controller is determined to be

~0.7966 —0.2337 | —0.4563
K(s)= | —0.2502 —0.7149| 0.5331 |.
04515 —0.5542 | 0.1822

2.6 Discrete-Time Systems

In this section, we describe in detail the FH-norm approach to disturbance minimization in
discrete-time systems, and propose the new Riccati equation based computational algorithm
for the design of an FH-optimal controller of selected order.

The formulation, as will be seen, reduces to a linear-in-the-free-parameters (LIFP) system

description coupled with a performance criterion that leads to a Parametric Optimization
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(PO) problem. The necessary conditions for optimality are derived, and a fixed-point algo-
rithm involving the iterative solution of Lyapunov equations is suggested by the structure of
the necessary conditions. Presently available algorithms require an initially stable system.
To resolve this initialization problem and aid convergence, a new algorithm is proposed which

involves the iterative solutions of discrete Riccati-equations.

2.6.1 The disturbance-rejection problem in discrete-time systems

Consider the disturbance-rejection problem for the system in Figure 2.7, where u is the

-—»- C
;——-»‘
u Plant
K | y

Figure 2.7: System with external disturbance.

control vector, ¢ is the controlled output vector, w is the disturbance vector, and y is the
measured output vector. The goal is to suppress the response in the output ¢ due to the

disturbance w. Consider the linear, time-invariant, discrete-time, stochastic state-space
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system

ZTryr = Az + Bup+ Ew,
Yk = Cz;+ Fw, (288)
¢ = Dz

with z; € R, (s € IR™, ux € IR?, yx € IR, w; € IR, and T, w] wi < oo, and with the

linear controller
€1 = Kl + Kayx,
uy = Kil+ Ky

where £, € IR* and all the parameters of the dynamic compensator are free design parameters.

(2.89)

Letting z.x = [zT ¢T]7, we get the closed-loop system

A s (29
where
A=A+ BKC, E.=E+BKF, D.=[D 0l = [E* of, F=[F" of
and
A=[§ g] B:[’g }’] é=[§ }’] K=K ?:] (2.91)

Then G.(z) = D.(zI — A.)"' E, represents the closed-loop transfer function from the distur-
bance input to the regulated output ((z) = G.(z)w(z).
In the spirit of the H.-norm optimization, the optimal solution to the disturbance-

rejection problem can be defined as
K° = arg rr}xén IGe(2))loo (2.92)

where
IGe(2)lleo £ max Gmac{Ge(2)}- (2.93)

Finding a minimum with respect to the H, norm, however, presents computational
problems as formidable as in the continuous case since there are no efficient algorithms to
solve the ensuing minimax problem involving a controller of constrained structure.

The FH norm of the discrete-time system (2.90), similar to that of a continuous-time

system, is defined in terms of Hankel singular values and is computed from the product of
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the controllability and observability grammians, P and Q. For A, a stability matrix, P and

Q are defined in the discrete case as

P2 Y A*E.E: (A, (2.94)
k=0 .
Q £ Y (A))*D:D.A, (2.95)
k=0
and satisfy the Lyapunov equations
APA:—P+E.E: = 0
A:QA.—-Q+D:D, = 0. (2.96)

The Hankel singular values are defined as

0:(G(2)) & VA(P Q), (2.97)

and can also be derived from the singular values of the Hankel matrix (20,22]. The FH norm

is given by

1GL(=)llrw & J'fa?(acm) - \J"ifxa(m) — J/Tr (PQ) (2.98)

1=1 i=1

if |A;(A)] < 1 Vi. Recall that even though the matrices P and @ are not independent of
state transformation, the eigenvalues of the product PQ are invariant under such transfor-
mations [20].

As has been shown, the FH norm and the Hankel singular values satisfy the bounding

relations
n+s n+s
rn(G)) € | G = 16w < Lo Gule) (299)
=1 =1
and
n+ts
Tne(G(2)) < 1Ge(2)]eo < 23 0:(Go(2)): (2.100)

i=1

Introducing the no:ation for the Trace-norm (T-norm) and Hankel norm

n+s

IGe(2)llr = 3 _0i(Ge(2)),  [1G(2)llir = Tmax(Ge(2)) (2.101)

=1

and the interval T of the real line defined by

T 2 [IG()la, 2Ge(2)lI7), (2.102)
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it follows that ||G.(2)|lc € T and ||Ge(z)|lF# € I. Recall also that if ||G.(2)llrw = 6,
then min ||G(2)||g = 7‘;6 while max ||G.(z)|lr = /né, and so the largest that T can be is
[:};6,2\/56], and, similarly, the smallest T reduces to the set [§,26]. Thus, as ||G.(2)||Fy is
reduced by minimization the interval I is also reduced and the FH norm and the H,, norm
are forced to move closer together. The FG norm minimization procedure thus provides a

near- H,-optimal solution, as depicted in Figure 2.8 (where G:(z) is the transfer function of

210G iy
NG It

201Gty

IG iy
~ 1G ey
) LAl
0 IG Hiy
Initial K Optimized K

Figure 2.8: The effect of optimization on I.
the optimized system). This will be amply demonstrated by an example in Section 2.7.1.

2.6.2 The FH-norm optimization

The FH-norm optimization in discrete systems problem reduces to the minimization of

the criterion

J = |Ge(2)l[ky = tr (PQ), (2.103)
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where P and @ satisfy the Lyapunov equation (2.96). The goal of the optimization is to find
K* such that

K* = arg n}én tr (PQ). (2.104)
To convert constrained optimization to an unconstrained optimization, we define again
the Lagrange multiplier matrices L € IR**™ and M € R*™*", L = LT, and M = M7,

following the approach developed for continuous-time case. This leads, in the discrete case,

to the extended cost function

J

Tr [PQ + M(A.PAT — P+ E.ET) + L(ATQA. - Q + DTD,)] (2.105)

and the following necessary conditions for a minimum:

aJ T
3 = ATMA,-M+Q=0
2‘-]— = ALAT-L+P=0
36% (2.106)
— = APAT_PL+EET=0
g 1}4 A.PAT + E.E!
—— = T - T =
AL ATQA. - M +DTD. =0
and X
621!5 =2(C(PATM + LATQ) + FETM|B =0, (2.107)

where the derivative of a scalar with respect to a matrix is defined in the usual sense. We see
that equations (2.106) are quadratic in the parameter matrix K, and that equation (2.107)

is linear in K. Equation (2.107) can be rewritten in the form

UrKV; + UK V; = A, (2.108)

U, = BI:MB, i= CPCT + FFT, U, = BTQB, V, = CLCT
A = —BT[(MAP +QAL)CT + MEFT].

The linear-in-the-parameter form of condition (2.107), which does not arise in the analogous

continuous-time problem [23], arises here because of the structure of the discrete Lyapunov

equation.

30




The use of numerical techniques is the only viable approach to the solution of the above
necessary conditions. Fixed-point or feasible direction algorithms as suggested by the form
of the necessary conditions, may be considered. However, convergence of the feasible direct
algorithm is slow while convergence of the fixed point algorithm is not guaranteed: At some
iteration, a destabilizing K; might arise, so that the matrices P;, Q;, L; and M; will not
be positive definite, and the algorithm cannot continue; or, while the algorithm rhight never
encounter this difficulty, it may still not converge. Problems such as this frequently occur in

parametric optimization problems (see [24]).

2.7 The Riccati-Based Algorithm

To improve computational efficiency, resolve the initialization problem [24], and achieve
convergence, we use an algebraic Riccati-equation approach for computing the FH-norm
optimal controller. This approach is the forerunner of the Riccati approach mentioned in
Section 2.5 for continuous-time case, and is treated here in greater detail. The use of the
Riccati equations is again proposed because of robust properties of positive semi-definite
solutions of these equations, and because of their relationship to the corresponding Lyapunov
equations (2.106).

Consider the Discrete Algebraic Riccati Equation (DARE)

APAT — P+ S5 - AP(P+ R)'PAT =0 (2.109)

for S > 0, R > 0. This has the same terms as the Lyapunov equation except for the
“rational” term AP(P + R)~'PAT. Recall the following fundamental property.

Lemma 2.1 [25]. If (A,S) is a stabilizable pair, then there exists a P > 0 that solves
equation (2.109). O

If S is positive definite then (A, S) is obviously stabilizable, and so P is positive defi-
nite regardless of the stability of A. This fact is exploited to construct an algorithm that

overcomes the initial stabilization problem. This property also guarantees the continuation
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of the algorithm through successive iterations by generating positive definite solutions to
Riccan equations constructed from the Lyapunov equations (2.106).
To adapt the Lyapunov-equation type conditions into a Riccati setting, we examine, for

example, the j*! iterate of the third equation in (2.106)
0= A, ;PiAT; — P + S; (2.110)
where S; = E,;ET.. We may expand this into the DARE form
0= A ;Pj1A]; = Pis1+ S~ A jPisa(Pisy + R P AL, (2.111)

where S is now given by S} = S§; + A.; Pj(P; + R)‘IP,-AZ:J-. If P is a fixed point of this
algorithm, (i.e., if P; — P as j — o0), then in the limit (2.111) converges to (2.110). We
use the same expansion technique on the other three Lyapunov equations and construct an
algorithm based on the iteration of the obtained Riccati equation in the spirit of fixed point
algorithms.

Algorithm:

1) Set K, (arbitrary), R>0,e¢>0,andlet P, =Q, =L, =M, =1

2) Compute A.; = A+ BK,;C,E.; = E + BK;F

3) Soive the DARE equations
= A.;Pin1Al; = Pip + i — AcjPisi(Pir + R)™1 P AT,
= AL,QjnAc; — Q@ + S5 — AT;Qi41(Qinr + RB)'Qjn1Aci

= A.;Lis1AT; — Lijy + S3j — AcjLipa(Lisa + R) ™' L AT
AZ:ijHAc.j — Mju1+ Sy — AZ:ij+1(Mj+1 + R)'M; 1A,

[ = R e I )

i

for PJ‘+1, QJ'+1,LJ'+1, and Mj+1, where

Si;; = Ec,ng:J‘ + A ;i P;(P; + R)'leAZ:j,
S = DID.+ AT,Q;(Q; + R)'Q,A.;
Sxj = Pj+Ac;Li(L; + R)'L,AT,,

Sy = Qi+ AcT'ij(Mj + R)"'M;A,,

4) Solve equation (2.108) for K,
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5) If [|K,+1 — Kj|| 2 ¢, go to 2); <lse stop.

This approach has several appealing features. First of all, P; and Q; (and hence L; and
M;) always have positive definite solutions if S;; and S,; are positive definite. This will
always be true if P, and @, are chosen positive definite (e.g., P, = Q, = I). The second
feature is the introduction of the matrix R in (2.111) which can be used to control speed of
convergence of the algorithm. This property can be seen in that for R > 0 and large, the
Riccati equation (2.111) approaches the corresponding Lyapunov equation (2.110).

If K is not stabilizing for some 5 > 0, the algorithm still generates positive definite P;, Q;,
L;, M;, and so the updates of K; may still be obtained uniquely from (2.108). In particular,
any K, € IR(P+*)x(*+3) can be used as an initial starting point, (unlike algorithms that iterate
on Lyapunov equations), resolving the initialization problem. The Riccati solutions may be
obtained by eigenvector or Schur methods [26]. Equation (2.108) may be solved by Schur
methods [27].

2.7.1 An example

The example used is a fifth-order plant and second-order controller. There are three
measured outputs, two control inputs, two disturbances, and two regulated outputs. The
system was open-loop unstable and the initial gain, chosen at random, was not stabilizing.

The matrices in this example are

[ 0.7090 0.2174 0.2156 0.2471 0.2714 ] [ 0.4218 0.6696 |
0.9167 0.6322 0.4611 0.1519 0.1583 0.9280 0.7232
A = | 0.4492 0.0208 0.9797 0.2248 0.3055 |, B = 0.3669 0.7510 |,
0.2074 0.6609 0.6527 0.4585 0.2312 0.2272 0.3142
| 0.6020 0.9731 0.5431 0.5976 0.9319 | | 0.4842 0.3740 |
[ 0.5190 0.3851 0.6518 0.1310 0.2305 ] [ 0.7631 0.4555
C = | 0.5971 0.4729 0.5466 0.5970 0.5064 |, F = | 0.0501 0.5027 |,
[ 0.3805 0.3592 0.8039 0.2023 0.1848 | | 0.6824 0.2716
0.6911 0.8366 ]
D - [ 0.1958 0.5790 0.8710 0.9427 0.0715 ] E- g?ﬂé g'gggg
| 0.9716 0.8839 0.7459 0.6631 0.7721 0.7691 0.2172

| 0.4180 0.6685 |
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with the initial gain matrix (partitioned as in (2.91))

0.9074
[ K, Kz]_ 0.6664
ks K 0.4865
0.3389

0.4859 0.5117
0.2697 0.7345

0.5581 0.0614
0.4706 0.3855

0.5784
0.0293

0.8401
0.3024

0.7800
0.6229

0.2379
0.9400

In simulations it was seen that using equation (2.108) directly to produce the update of
K causes the step size between updates to be large regardless of the size of the matrix R.
A modification of this algorithm to control the step size was seen to be useful. This may be
readily accomplished since the updates of the gain need not be stabilizing. An update law

for the gain K was chosen to be

K_,'.H = aN,- + (1 - a)Kj, ae€ [0, 1]

where N; is the solution of equation (2.108) in the j*® iteration.

Various choices of the gain a, and the matrix R were analyzed. The variation of the four
norms, the H,, norm, the FH norm, the Hankel norm, and the trace norm -t each iteration,
where the values R = 5I and a = 0.6 were used, is shown in Figure 2.9. The value of K at

iteration 40 was

—15.8530  2.5021 17.2028 -3.1335 -—3.9396
Ko = 11.2437 -3.1656 -~13.5988 3.1284 3.5185
10 = 2.0500 0.0137 -2.5740 1.1343 0.8562
—2.5727 —0.0660 3.3596 —1.6122 —0.8960

In this example, we can see that beyond 20 iterations the various norms decrease exponen-
tially. In Figure 2.10 we see that the algorithm keeps finding gains that reduce the FH norm,
even though the convergence of the gain K is not smooth. The use of a step-size control is
seen to be useful in this case. The FH norm and the H,, norm, in this example, are seen
to be close not only at the optimum but also at each iteration. We can also see that in this
example, the solution is stabilizing, and also produces a stable controller.

In this example, the interval T = [6.00, 25.25], bounds the H,, norm which was 9.44 at
the point in which the first stabilizing gain was determined. After 30 iterations, the interval

bounding the H,, norm was reduced to {.0105, .0399], and its actual value was .014. Thus,
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Figure 2.9: Log of various norms at each iteration.

a significant reduction was made in the H, norm and also the bounding interval Z. The
fact that the interval can be monitored implies that its size and location may be enough
to identify the size of the H,, norm. Thus, the desired accuracy of the H,, norm may be
obtained without actual computation.

Also considered was the effect of varying the order of the controller. Figure 2.11 shows
the FH norm trajectories in the computation process. As expected, the size of the controller
affects the reduction of the H, norm. Each of the initial controllers chosen were unstable
and resulted in unstable closed-loop systems. After fifty iterations, with the controller of
order s = 1, the interval 7 was [0.0998, 0.5694), and the FH norm was 0.1448, the H,, norm
being 0.1254. For the controller of second order, I was reduced to [.000171, .000583], and
the FH norm was .000182, while the H,, norm was .000228. Finally, for the third order
controller, T was [1.80e-6, 1.10e-5], and the FH and H., norms were computed to be 4.38e-6
and 2.00e-6 respectively. It appears that the first-order controller converged with an FH
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norm of approximately .1448, while the algorithm produced controllers of order 2 and 3 with

significantly smaller FH norm.

2.7.2 Application to other design problems

The disturbance-rejection paradigm can be used to treat other control problems in a
common framework. Prominent examples are the tracking of exogenous inputs, and model
reference design [28]. These are together with the disturbance-rejection problem depicted
in Figures 2.12. As before, u is the control vector, ¢ is the controlled output vector, w is
the disturbance vector, and y is ihe measured output vector, while r is a reference signal.
In the tracking problem, we also have the exogeneous input @w. The goal of the disturbance
rejection problem is to suppress the response in the output ¢ due to the disturbances w. The
objective of the tracking problem is to minimize the “throughput” from the input vector

v = [T wT]T to the output e. Similarly the goal of the model reference problem is to find
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Figure 2.11: FH norm variation for controllers of different order.

a controller that reduces the effect of the “disturbance” input vector » = [rT wT|7T to the
output vector e.

Developing a common design methodology, we first find a common way of representing the
closed-loop system in the tracking and model reference design in a linear-in-the-parameters
fashion, considering again the linear, time-invariant, discrete-time, stochastic state-space
plant (2.88).

We consider additionally in the tracking problem the tracking model

Bkv1 = Ay + Byin
r = Cim (2.112)
and the controller
fk+1 = Klfk + [K2 K3] [ z: ] y Ugp = K4fk + [Ks Ks] [ ':{: ] ’ (2-113)

and so for z.x = [u] zf E7]7, vk = [0 w]]T, and e; = ri — (& we have

Tehs1 = AcdZek + Ecavr, e = Dyz. (2.114)
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Figure 2.12: System structure for disturbance rejection, model reference and tracking.

where Ac't = Iig + BgKgc.'g, Ec'g = Et + Egl(gi;"g, Dg = [Cl - D 0],

) (A, 0 O } 0 0 ) Ci, 00

A = 0 AO0|, Bp={B O |, Ctc=10 C 0 |,
(0 0 O 0 I, 0 0 I,
B, 0 00

E~'¢ = 0 F |, Fg= 0 F |, Kt=[§6 gs §4]
(0 0 00 37

For the model reference problem, we adjoin to (2.90) the model

P41 Aypr + Biry

b, _ Cone (2.115)
and the controller
Err = Kibx + [y K [ ’1{: ] o we = Kebi + [Ks K [ ’:: ] : (2.116)
and so for z.x = [uI zT ¢T]7, and vy = [r] w]]7, we have
Teks1 = AcdTer + Ecavk, ex = Dyzei (2.117)
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where A, = A + BnKyComy Ecn = Em + Bp K Fo, Dy = [C, — D 0],

i [A;, 0 0 ) 0 0 ) 00 O
Amn = |0 A 0|, Bu=|B 0 |, Ch=1]0C 0],
0 0 O 0 I, 00 I,
B, 0 I, 0
E, =0 E|, F,={0 F ,R,,.:[’I? 11‘25 ?‘]
(0 0 0 0 3 0
All the parameters Kj,..., Kg of the various dynamic compensators are free design param-
eters.
For each of these problems,
G.(z) & D.(zI — A)'E. (2.118)

represents the closed-loop transfer function from the “disturbance” input to the output,

e(z) = G.(z)v(z). We thus have a common representation for each of the three problems,

which reduce to a disturbance rejection problem.

2.7.3 Examples

Using the same fifth-order plant and second order controllers. There are three observations,
two control inputs, two disturbances, and two outputs. The system was open-loop unstable

and the initial gains, for both the model reference and the tracking problems, were chosen
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at random and were not stabilizing. The data defining the examples are

[ 0.7090 0.2174 0.2156 0.2471 0.2714 ] 0.4218 0.6696
0.9167 0.6322 0.4611 0.1519 0.1583 0.9280 0.7232

A= 04492 0.0208 0.9797 0.2248 0.3055 |, B =] 0.3669 0.7510 |, .
0.2074 0.6609 0.6527 0.4585 0.2312 0.2272 0.3142
| 0.6020 0.0931 0.5431 0.5976 0.9319 | 0.4842 0.3740

£ 0.5190 0.3851 0.6518 0.1310 0.2305 ] )
C = | 0.5971 0.4729 0.5466 0.5970 0.5064 |,
| 0.3805 0.3592 0.8039 0.2023 0.1848
0.1958 0.5790 0.8710 0.9427 0.0715
0.9716 0.8839 0.7459 0.6631 0.7721 |’
[ 0.6911 0.8366
0.9911 0.9238 [0.7631 0.4555]
, F= .

E=| 01412 09555 0.0501 0.5027
0.7691 0.2172 0.6824 0.2716
| 0.4180 0.6685

For the tracking problem, we considered the model

0.0119 -0.7220 0.9915 0.6242 0.5635 0.6350
A =| -04124 04140 0.2435 |, B; = | 0.1253 |, C;=| 0.3515 0.9839

—0.1547  0.2075 0.4138 0.1564 0.7593 0.2910
and used the initial feedback gain

—-1.8687 -—0.3008 —-1.5063 1.8896 -—0.7378 1.9863 —0.5630 ]
1.1583 —1.9086 —0.3427 -1.2689 -1.8124 1.0980 -0.2509
Ko =
-0.6677 -0.5334 -0.7351 -0.8977 1.3538 —-1.6057 0.5989
-0.1027 -0.0875 0.7479  0.2787 -1.6202 0.9261 -0.2072 |

For the model reference problem, we considered the model

0.6242 0.5635 —0.5186 0.4181 -
,Br =1 0.1253 0.9838 | ,C, = 0.4124 0.2971

0.1564 0.6350 —0.0119 0.1547

—0.0313 0.2246 0.1190
A, 0.0834 -0.0586 0.2339
0.7635 0.0384 -—0.4704

and used the initial feedback gain matrix

-0.5773 -0.0756 0.3200 0.1270 -0.3971 —-0.1547  0.9915 ]
0.7430 -0.7640 0.2484 0.9679 —0.4181 -0.7220  0.2435
Ko =
0.6301 0.0165 —0.7493 0.2700 0.4124 0.4140 0.4138
0.7410 -0.7173 —-0.6873 0.5186 —0.4124 0.2075 -0.9343 |
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Both initial gains were chosen at random. The variation of the our norms: the Hankel norm,

the H,, norm, the FH norm, and the trace norm for the disturbance rejection problem was

shown in Figure 2.9. Figure 2.13, and Figure 2.14, show analogous, results for the tracking
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Figure 2.13: Log of various norms for the distribution of rejection problem.

and model reference problems, respectively. The value of K at iteration 40 for the disturbance

rejection problem was given earlier. For the tracking problem at iteration 35 the gain was

-7.8413 53768 -12.1889 1.4176 13.1417 0.3271
8.1238 -5.5467 7.7612 -2.1177 -9.7492 -0.1666
1.2912 -0.9435 4.3515 0.9927 -6.2684 0.6571
1.2044 -1.0983 0.9982 09183 -2.1879 0.5003

and the value of K at iteration 40 for the model reference problem was

24721 -1.7562 -15.1818 2.1323 16.6832 -—0.1850
—-2.0549 1.6154 10.4600 —-2.7596 —12.9371 0.3262
—-1.8793  0.8583 8.8285 0.1290 -11.7637 1.1118

1.3085 -0.0726 —4.4312  0.1457 5.9159 -0.6352

K35=

K4o =

0.9358
—0.9349
—0.9840
-0.2711

—1.8802
1.8608
1.4165

~0.5588

In this example, we can see that beyond 20 iterations, the various norms decrease exponen-

tially. Figure 2.15 shows the convergence of the algorithm in each of the three problems as
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Figure 2.14: Log of various norms at each iteration for the model reference problem.

represented by the change in K;. The FH norm and the H,, norm, in this example, are seen
to be close not only at the optimum but also at each iteration. We can also see that in the
example, the solutions are stabilizing, and also produce stable controllers.

Recall that in the disturbance-rejection example, (see Table 2.1) that the interval 7 =

Table 2.1: Variations in AK; for the three example problems.

[Problem | Z-initial H_.-initial | Z-final Optimized A,
Dis. Rej. | (6.00, 25.25] | 9.44 0.011, 0.040] | 0.014
"Tracking | [53.85, 154.07] | 68.64 0.90, 2.23] [ 0.94
Mod. Ref | [3.74, 12.28] | 6.87 0.012,1.13] | 0.014

(6.00, 25.25], bounds the H,, norm which was 9.44 at the point in which the first stabilizing
gain was determined. After 30 iterations, the interval bounding the H., norm was reduce
to [.0105, .0399], and the actual values was .014. Corresponding results for the two other

problems are summarized in Table 2.1. Thus, a significant reduction was made in the H,,
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Figure 2.15: Log of various norms at each iteration for the tracking problem.

norm and also the bounding interval Z, in each of these examples.

The FH-norm approach to disturbance rejection provides computational ease and a near-
optimal solution to the H,,-norm minimization for controllers of bounded order. The ability
to consider a broad class of problems makes this approach all the more attractive for control
design. These features are amply illustrated on the fifth order example. The new Riccati
equation based algorithm is computationally attractive since it takes advantage of devel-

oped computational tools for the Riccati equation and eliminates the search for an initial

stabilizing solution.
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3 LOW-ORDER CONTROLLER DESIGN USING
PROJECTIVE CONTROLS

3.1 Time-Domain Properties of Projective Control

The projective controls approach offers a method of designing a low-order output feedback
controller to retain a subset of eigenvalues and associated eigenvectors of a reference state-
feedback system. The reference system is typically obtained using an LQ approach or an
H-norm approach. The obtained controller can be either static or dynamic, the order being
determined in the design process so as to meet stated design objectives. Dynamic projective
controllers are parameterized by a p X r matrix of free parameters, r being the dimension of
the measured output vector, p being the order of the controller. When transient performance
is the issue, an LQ approach is typically used to determine the reference system, and the
retained eigenstructure is chosen to retain the dominant dynamics of the reference system.
The design freedom available in the free parameters is then used to shape the residual
dynamics. When disturbance rejection is the issue, an H-norm approach is employed and
the design freedom in the available free parameters is used to further improve disturbance
rejection.

In this section time-domain properties of projective controls are reviewed emphasizing in
particular a convenient parameterization of projective controllers. The remaining sections
expand the projective controls methodology and provide design tools to achieve transient
performance and disturbance rejection using low-order controllers. Section 3.2 concentrates
on the problem of shaping the residual dynamics, Section 3.3 presents the frequency-domain
properties of projective controls and their impact on the disturbance-rejection problem,
Section 3.4 develops the FH norm approach to solve the disturbance-rejection problem us-
ing projective controllers, and Section 3.5 introduces a convenient similarity transformation
which reduces the system reprasentation to a linear in the free parameter form and extends

the design to decentralized systems.

The projective controls method [29], [30] is a method for designing low-order controllers
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for higher-order systems based on retaining a subset of the poles and the associated eigen-
structure of a reference system. The reference system is determined by a state-feedback
controller which is chosen for its desirable properties. Many algorithms exist for designing
state-feedback controllers; thus projective controls approach is suitable for use in combina-
tion with many types of synthesis methods. Moreover, once the state-feedback controller is
determined, the projective controller is easily computed. In particular, this reference system

can be written in the form

G.(s) = G1(3)Gra(s), (3.1)

while the closed-loop projective controls system has been shown to reduce to
Gy(3) = G(s)Gpals). (3.2)

The G,1(3) is called the retained subsystem while Gp3(s) is called the residual subsystem.
The order of the retained subsystem is determined by the class of controller chosen. Three
classes of controllers are considered here: static, proper and strictly proper controllers. For
a static projective controller the residual dynamics are completely determined and stability
and performance of the non-retained dynamics is not guaranteed. In the case of dynamic
controllers, the projective controllers are parameterized by free parameters. These may be
used to achieve stability and improve the performance of the residual subsystem. In the
remainder of this section, we state the basic properties of projective controllers and develop

controller parameterizations.

3.1.1 Static controllers

Suppose a state-feedback controller u = K,z is applied to the system (2.1) and yields the

reference system

G.(s) = (H + EKo)(sI - F)™'G, (3.3)

where F = A 4+ BK,. The eigenstructure of the reference system is FX = XA where A

is a diagonal matrix of the eigenvalues of F, A\(F) and X is a matrix of the associated
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eigenvectors. The reference system can be determined using any of the appropriate state-
feedback design methodologies. One common design approach is LQ optimization. It has the
desirable properties of producing controllers which are guaranteed to be stabilizing through
the solution of the algebraic Riccati equation. In particular, the stabilizing controller which

minimizes ||G(s)||z is given by
u= Kz, K;=-BTM,, (3.4)
where M; > 0 is the solution of the algebraic Riccati equation
ATM, + MA — M;BBTM, + HTH = 0. (3.5)

For details, see for example [31].

A stablizing controller which guarantees ||G(s)||ec < « 18 given by
u=Kepz, Ko=-BTM, (3.6)
providing there exists M., > 0 which satisfies the algebraic Riccati equation
ATM, + M A - M BBTM_, + %MOOGGTM“, +HTH =0. (3.7)

For details, see for example [1].
Consider now a static controller which retain the r reference eigenvalues A, and associated

eigenvectors X,, where r is the number of measured outputs.

Theorem 3.1. If A, is observable from C, then the static output-feedback controller C(s)
retains [A,, X,] if and only if

C(s) = D. (3.8)
where
D. = K,N,, (3.9)
N, £ X,(CX,)™. (3.10)

Proof. Let the feedback D, retains [A,, X,]. We thus must have
A.X, = (A+ BD.C)X, = X.A,. (3.11)
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Also
FX, =(A+ BK,)X, = X,A,. (3.12)

Subtracting the two equations yields
BD.CX, = BK, X,. (3.13)

Since A, is observable from C, C X, is invertible and (3.13) is satisfied by D, given by (3.9),
(3.10). Conversely, let D, be given by (3.9), (3.10). Then

A.X, = AX, + BKoX, = FX, = X,Ar. (3.14)

a

Theorem 3.2. Given the control law (3.8)-(3.10), the eigenvalues of the closed-loop system
are

de = A UA(AY), (3.15)

where

A, £YT(I, - N,C)AY (3.16)
and Y satisfies CY =0 and YTY = I,_,.
Proof Let T be given by

_ L _[Uul_ [ ©x)c
T=[X Y, T _\V]_[YT(I,.—N.,C)]'

Note that U and V exist provided that C X, is invertible which is guaranteed by the observ-

(3.17)

ability of A,. Thus T is invertible since U and V exist.

- A, =
T'AT = [ 0 A ] (3.18)
with
A, =YT(I, - N,C)AY (3.19)
Q
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3.1.2 Proper Controllers

The following result identifies the class of p*®-order controllers that retain r + p eigenvalues

and the associated eigenvectors of the reference system.

Theorem 3.3. The set of p**-order proper controllers which retain [A,, X,] and [A,, X,] is

given by

C(s) = C.(sI — A.)'B. + D,

with {Ac, B.,C., D.} parameterized by P, € IRP*" as

A. = A, +P,CFB,
B. = P,CF(N,- B,P,) - AP,
C. = K,B,

D. = K,(N,- B,P,)

and B, & (I, - N,C)X,.

Proof From

follows

or

or

thus,

|

A+ BD.C BCC] X, X,]=[X,, X,HA,

A.X, = XA,

B.C A W, W,
AW, + B.CX, = W,A,
AcWr + BcCXr = WrAr
BC.W, + (A + BD.C)X, = X,A, = (A+ BK,)X,
BC.W, + (A+ BD.C)X, = X,A, = (A+ BK,)X,

)

A. B.1[ W, W, ]| _[WaA, WA,
Cc. D.|| cx, cx. |~ | K.X, K.X.

A. B.| _[wA, WA [ W, w17
c. .|| kX, K.X. || CcX, cX. | -

Define L 2 W, 'W,; then (3.24) becomes

A. B.] _[ WA, W,LA,
C. D. |~ | K.X,

w, w,L]™
KX,

CcX, CX,
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or

8] 20 E ] T 2] oo

Note that W, represents a state-space transformation of the controller and thus W, is arbi-

trary. It follows that

I, L 17 _[L+La'CcX, —-LA™
cx, ¢cx,| | -a-cx, a-

with
ALCX,-CX,L.

Defining P, & L(CX, — CX,L)™!, produces
-1 = (CX,)"'(I, + CX,P,)

and

I, I+ PCX, -P,
CX CX ~-(CX,)" 1C'X,,(I + P,CX;) (CX,) (I, + CX,P,)
Now setting W, = (I, + P,CX,), the identity in (3.24) becomes

A. B. (I, + P,CX,)A, P,CX.A, I, -P,
C. D, K. X, K.X, —(CX,)"'CX, (CX.)"MI, +CX,P,)

A. B.]_[ A+ P.CF(X,-N,CX,) P,CF(N,CX,~ X,)P, +P,CFN, - A,P,
C. D.|= K.(X, — N,CX,) Ko(N,CX, — X,)P, + K,N, ’

which finally results in

Ac B.)| _[A,+P.CFB, P,CF(N, - B,P,)~A,P,
c. D.|~= K,B, Ky(N, — B,P,) '
a

Theorem 3.4. Given the control law (3.20)-(3.21), the eigenvalues of the closed-loop system

are

Ae = AU A UA(A,) (3.26)
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where

Proof: Consider

and define

which gives

T-l

|

A, 2 A, + B,P,AY. (3.27)

i_[A+BDL BC.
=l BC A

T=

]=

[ X X, Y
I,+ P.CX, P.CX, 0|’

~-P,C I,
(CX,)"*C(I + X,P,.C) —(CX,)"'CX,
YT +YT(B,P,—N,)C  -YTB,

| peeee——

< T

It can now be verified that

with

Ap 0 =
A, =

0 -~
0 0 4

A, =YT(I, 4+ (B,P, — N,)C)AY = A, + YTB,P,AY.

3.1.3 Strictly proper controllers

Consider finally the p*t-order strictly proper controller which retain the p reference eigen-

values A, and associated eigenvectors X,.

Theorem 3.5. The set of p*P-order strictly proper controllers which retain [Ap, X,) is given

by

C(s) = Cu(sI — A;)™'B. (3.28)

and parameterized by P, € IR"*? where

A. = A, —-P.CX,
B. = P, (3.29)
C. = K.X,
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Proof. From
A BC. Xo | _ | Xp A
B.C A, W, | i W, |'?

AW, + B.CX, = W,A,

we have

or

Wy(A, — W1 B.C X, )W,
Defining P, £ W, ! B, relation (3.31) reduces to

Ac = W,(A, = P.CX,)W,!
with
B. = W,P,.
From (3.30) also follows
BC.W, + AX, = X,A,
or
BCW,+ AX =(A+ BK,)X,,
which is satisfied by
Cch = KOXP

or

C.= KOX,,W;I.

(3.30)

(3.31)

(3.3zj

(3.33)

(3.34)

Note that W, represents a state-space transformation of the controller and thus W, is arbi-

trary. Choosing W, = I,,, reduces (3.32)-(3.34) to (3.29).

Theorem 3.8. Given the control law (3.28)-(3.29), the eigenvalues of the closed-loop system

are
XC = A,, U A(A,)
where

A 2 A-X,PC.
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Proof. Consider
i= A BC.
7| BC A,

and introduce the transformation

(X, L) aa [0
T"[I,, o]’ T "[I,, -X, |

Then
pig g | Ap ¥
TAT = [ 0 A
and so '
A =A-X,P,C.
o
3.1.4 Example
Consider the system defined by
0o 1 -2 1 0
-2 -1 0 1 1
A = 0 1 o 1,B=0 C=[1 00 0],
1 -2 -1 -1 1
Q = diag {100,0,100,0}, R=1,
with
Spec {A} = {-1.53 % j2.18,0.53 £ 50.92}
and

Spec {F} = {—3.57 % j4.09, —1.30, ~0.56}.

It can easily be determined in this problem that static projective controls will not stabilize
the system. Thus, a first-order dynamic controller is sought. Since r = 1, p = 1, there is only
one free design parameter. It effect on the residual dynamics can be observed by considering

the root locus for the residual system (note that here C = [I, 0),s0 YT =[0 I,])

T, = (Ar + BOPAIQ)zr
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where

~2446 46.93 -22.46 -9.10
A, 0.78 0.44 0.78 |, Bo= 0.07
21.59 -—48.18 2259 8.94
Az = 1 -2 1)
Omitting the details, it is determined in this particular problem that the stabilizing values

of p are in the interval [-2.575, -2.595). The controller parameters are

=-13-031p, D =0.85p +0.31p?
Ny = 13.49, Ky = —35.84 — 13.49p.

Taking
p=-2.5875

the controller becomes
= -0.50, D =0.17
N;=1349, K;=0.49

and the spectrum of the closed loop system becomes
Spec {A.} = {—0.56,~1.30, —0.20, —0.22 + j1.44}.

Here, the first two eigenvalues have been retained from the reference dynamics, and the last

three placed by solving the auxiliary pole-placement problem.

3.2 Shaping the Residual Dynamics

Consider presently that C = [I, 0] as in the previous example, and note that the residual
dynamics (3.32) can be associated with an auxiliary static output-feedback control problem
for a system of (n — r)*t-order with p input and ¢ outputs, where ¢ = rank A;,. It is well
known [32] that such an output pole-placement problem has a solution for almost all A,, B,

and A,;, and almost all desired spectra Agif n —r < p + ¢, i.e., if
p>n—r—q.

This implies, in particular, that when A;; is maximum rank, ¢ = r, the pole placement
problem can be solved for almost all problems using an (n — 2r)*t-order controller; this is

of lower order than the Luenberger (minimum order) observer. We present a solution to the

53




pole-placement problem in a novel way that utilizes the full available freedom, as opposed

to earlier procedures where P is frequently (for ease of calculation) restricted to be of unity

rank [33].
Let
L= [Ul Uy

where U; € R*-77 U, € Rn=7)%(n=2r) gatisfy

AUy =1
AuUz = 0
Then
A =T7A..Th = T,"‘A,.Tl + T{‘BOP[I 0].
Define

-1 _| Du Dr: -ip _ | Ba
h A'T“[Dn D |" TWB=|pg,

with Dy, € R™*", Dy, € R("°2')ﬂ, E, € R"™*?, Then

A = Dy + EyP Dy
' | Dn+EP Dy |

Now introduce the second transformation

L I -L I

Tg:[I' 0], T2—1=|:Ir 0],L€R(2"-'):'.

It can then be shown that

Ay, = T7'AT, =T' T AT, =T A, T

- Dy + Dy L+ E\P Dy,
—R(L)+ (E3 —~ LE,) Dj3— LD,

where

R(L) = LDy — DyyL + LDyoL — Day.
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(3.39)
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(3.41)

(3.42)
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Now suppose n — 2r > p; this implies that a solution to the pole-placement problem almost
always exists. It also allows a non-unity rank solution to the pole-placement problem to be

determined. To this end, decompose E; — LE, as
E; — LE, = [M;, M) (3.45)
where M; € R("-)%(n=27) and det M; # 0. Decompose P and E, as
P=[P, P, E =[E} E) (3.46)

with Px € R(n-—2r)xr, P2 € R(p—n+2r)xr’ Eix € Rrx(n-zr)’ and E{’ € Rrx(p-n+2r)'

Theorem 3.7. Let L place the pole of Dy; — LDy; at A, and let P; place the poles of
A. — B, P at A; where

Aa = Dy + Dy2L + EZM'R(L) (3.47)
B, = E;M['M, - E,. (3.48)

Then if
P, = M{Y(R(L) — My P,) (3.49)

we have
A(A;) = AL UA,. (3.50)

Proof From 3.43, using (3.45) and (3.46) follows

Ay = Dy + DL+ E2P, + E}P; Dy, (3.51)
*7 | =R(L) + MyP, + M, P; Dya~ LDy |° '
Choosing P, to satisfy (3.49) for given L and P; produces
A, = Dy, + Dy L + EEM'R(L) — (E2 MM, — E})P, Dy,
2 0 Dy; = LDy, |°
a
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3.2.1 Example

To illustrate the above pole-placement procedure consider problem of placing the poles of

[0 10 0 0 1
g= |0 01 |z4{01]us|0|w
=7 3|2 TO0. 0

-

_[1 o]0
V= 1o 10|

at Ay = {-3, -4, -5}. For this problem

1
Dll = [g 0]) Dl2=[(1)]7 Gl=[é],

D2l = ["4 - 3]1 D22 = _2’ G2 = [0],

I.

00
B, = [0 1], B; =1 0].

Follows
0
D3y ~ LDy = =2 — [¢; &) [ 1 ] ==2-1{,
Suppose the eigenvalue of Dy — LD, is selected to be —4 € A4. In view of above choose
eg =2

and without loss of generality, let £, = 0. For this L we get
R(L) = LDy ~ DL 4+ LDyL — Dy,

= [e,zl[g (1)]-2[e12]+[e,2][‘1’][e21-[-4 — 3]

which produces
R(L)=[43).
We now want to satisfy
R(L) = (B: — LB\)P;

so,

[43] = ([10]-[02][3 ‘I’D[g ;:]

= [P] Pg] - 2[P3 P4],
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and hence,

[P, Py] = [4 3] +2[P; Py

Since here Ty = I, then E = T;*B = B, and so E, = By, E; = B;. Thus we solve the pole
placement problem

A(D11 + DyoL + B1K) = Agp = {-3, -5}

Since (0 17,0 0o0][P P
_ 1 B2
Dy, + DL+ B,P = .0 0.+.0][02]+[0 1][P3 P4]
3 '01'+'o 0] _[o 1
- _0 2. _P3 P4 - P3 P4
this demands that
P3 = -15
P4 = -=8.
Which in turn results in
P1 = -26
Pg = —8.
And so the gain matrices
26 17
p=-[% o] v

place the poles of A,. at {—3, -4, —5}.

3.3 Frequency Properties of Projective Controllers

In the previous sections, attention was focussed on improving the closed-loop performance
by retaining properties of a state-feedback controlled system with a low-order projective
controller; thus, time-domain properties of projective controls were exploited. Disturbance-
rejection properties are typically judged according to frequency-domain measures such as the
1l norm. Expressions have therefore been developed which relate the frequency-domain
properties of a system with a projective controller to the frequency-domain properties of a
system with a state-feedback controller.

In treating frequency domain properties via transfer functions it is often useful to use

the compact notation of the transfer function while retaining the state-space representation
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for computational purposes. We do so here and introduce the following notation for this

purpose:
Definition 3.1. Given the state-space representation of the LTI system

z(t) = Az(t)+ Buw(t)

«(t) = Cz(t)+ Dw(t) (3.52)
where z € IR® is the state, w € IR™ is the input, z € R" is the output, the transfer function
of the system shall be denoted by the packed representation

[_;H%] 8 C(sI- A)'B+D. - (3.53)

Thus, through the use of the expression (3.53), the transfer function of the system is
represented in terms of a state-space representation using a compact notation.

Let
a A1 Bl A Az Bz
Gl(s)_[cl D1]’ G,(s).[c2 D,]' (3.54)

If the two systems G;(s) and G,(s) are cascaded together as in Figure 3.1, the resulting

et G'l(s) Gg(s) | —

Figure 3.1: Cascade connection.

system can be represented as

Ay BCi | ByDy
0 A B,
C: D,C,| DDy

Gg(S)G](s) = . (355)

If the two systems are connected in parallel as in Figure 3.2, the resulting system can be

represented as
A 0 B,
G;(s) + Gg(s) = 0 .A_g Bg

(3.56)
Ci C;| D+ D,
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Gi(s) | +
L
Ga(s) |

Figure 3.2: Parallel connection.

P

P(s)

C(s) te

Figure 3.3: Feedback connection.

Note that representations (3.55) and (3.56) are not necessarily minimal. Consider finally the

feedback configuration of Figure 3.3. Let the plant have the state-space representation

¢ = Az+ Bu+Guw
z = Hz+ Eu (3.57)
y = Cz+ Dw

where z € IR" is the state, w € IR™ is the disturbance input, u € IR" is the controlled input,
z € IR’ is the controlled output, y € IR™ is the measured output. The transfer function P(s)

is characterized by
z(s) | _ w(s)

A|lG B
P(s)-A_-[H 0 E

c|p
Cs) & [%] (3.60)

u(s) = C(s)y(s), (3.61)

Then

. (3.59)

If the syster is controlled by

so that
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then the closed loop feedback system represented on Figure 3.2 is given by

A+BD.C BC.|G+ BD.D
Gs)=| BC A | BD (3.62)
H+ED.C EC.| ED.D

We can now state the following results for transfer function properties of projective

controllers.

Theorem 3.8. Define the error between the static projective system and the reference

system as
E(s) £ G.(3) = G,(s). (3.63)

Then

= Zi(8) - Ez(s) (3.64)
where G, 2 YT(I, - N,C)G.

Proof. Recall here that A, is given by (3.36). By definition, E(s) is given by

F 0

G
0 A |-G |. (3.65)
H+EK, HYED.C| 0

E(s) =

Applying the state space transformation

Toé[l" -X ’Y], T =

o

0 X, Y (3.66)

o o
< Qs

produces
F 0 -BK,Y| O
0 A, UAY |-UG
E(s) = 0 0 A R:2E (3.67)
H+FEK, 0 -EK)Y|[ O

Removing the unobservable states yields

E(s) = o o |ve |l F 1B} A VG (3.68)
. H+ER,[E||Kr]o|° @
HTEK, —EK.Y| 0
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Theorem 3.9. Define the error between the proper projective system and the reference

systems as E(s) 2 G,(s) — G,(s). Then

|G, +YT"B,P,CG | _ ,
E() [H+EK IE][KYl ) ]—EI(S)E2(3aPo) (369)
Proof Recall that A, is given in (3.27). By definition now
F 0 0 |-G
0 A+BD.C BC.| G
E(s) = 0 B.C A, 0 (3.70)
H+EK, H+ED.C EC, | 0
Applying the state space transformation
3 I, -X, -X, =Y
.21 0 X, X, Y (3.71)
0 I,+PCX, PCX, O
I, I, 0 ¥
=1_ 1|0 -P,C I,
=10 (CX.)'C(L +X,P,C) —(CX.,)-'CX, (3.72)
0 YT+YT(B,P,-N,)C -YTB,
yields
F 0 0 -BK,)Y 0
0 A, O * *
E(s) = 0 0 A, * * . (3.73)
(L 0 0 A, G,+YTB,P,CG
H+EK, 0 0 -EK)Y 0
Removing the unobservable states yields
F -—B~K°Y 0
E(s) = 0 A, G.+YTB,P,G (3.74)
H+ EK, -EK,)Y ] 0
which is equivalent to
|G, +YTB,P,CG
E(s) = [H+EK|E][KY| 0 ]' (3.75)

Theorem 3.10. Define the error between the strictly proper projective system and the

reference system as E(s) & G,(s) — Gp(s). Then

F |B][A
E(s) = [H+E'K|E][II ] (3.76)




Proof By definition, E(s) is now given by

F 0 0 |-G
0 A BC.| G
E(s) = 0 B.C A, 0 (3.77)
H+EK, H EC.| 0
Applying the state space transformation
I, =X, -1, ) I, I, 0
.20 x, I, |, T7'=|0 0 1, (3.78)
0 I 0 0 I, -X,
yields
F 0 -BK,|O0
0 A, BC |0
E(s) = 0 0 }L e (3.79)
H+EK, 0 -EK,|0

Removing the unobservable states yields

E(s) = A B _[ F |13_HﬁflG]
AT ER, “EK,[0| LH+YEKIE][K]O

3.4 FH-Norm Optimization of Projective Systems

Previous development has shown that, when dynamic projective controls are used, the

error transfer function in all cases reduces to
E(s) = Ex(s) - Eo(s),

where E;(s) is independent of the free controller parameter while E;(s) depends on F,.
Because || E(3)]| < || Ex(s)]| - || E2(s)]| and || E1(8)|| is constant, it is a natural idea is to choose
Py to reduce ||E,(s)]]. This, however, is not necessary and one may attempt to reduce
||E(3)|| which represents a frequency weighted optimization problem with respect to P,. In
either case, an auxiliary minimization problem is solved to determine the free parameters
of the dynamic projective controllers in the disturbance-rejection problem. The auxiliary

minimization problem is to find P, to solve
Py = arg min IT(s; Po)l, (3.80)
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where T'(s; P,) is some appropriate transfer function which is dependent upon P,, and || - ||
is an appropriate norm. The transfer functions that we will consider here are E;(s) given
in (3.64) or (3.69), and the norm will be the FH norm as the computationally feasible
alternative. The alternative approach where T'(s) = E(3) is also of interest and has the
advantage that it takes into account the frequency weighting implied by E,(s) in (3.64) or
(3.69). Finally, we may choose

T(s) = G(s) (3.81)

in which case the intent is not to reduce the error, but instead directly reduces |G(s)|| subject
to constraint on controller structure. In this section we choose to select the free parameters
of the system P, to satisfy

Py = arg ngon | E2(35 Po)l|Fars (3.82)

while the alternative approach of reducing ||G(s)||Fy is considered in the next section.

For the case of strictly proper controllers E,(s) is given by

oo - 18] - (445

where A, is given by (3.36). The problem then is to minimize over P,
J(P,)= Tr P.Q. (3.84)
subject to the two Lyapunov equations
A.P.+P.AT +B,BT =0 (3.85)

which define the controllability and observability grammians of (3.83). The necessary con-

ditions for a minimum then consists of (3.85) and

AL + L AT + P, = 0
Az'Mr + MrAr + Qr = 0 (3-86)
XT(Q.L, + M,P,)CT = 0

where M. and L, are Lagrange multipliers for the constraints (3.85).
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The gradient of J with respect to P, can be computed for arbitrary P, as

dJ _ T T
3 = 27 QL. + M,P.)C (3.87)

where P,, Q,, L, and M, solve the Lyapunov equations (3.86).

Thus, a feasible directions algorithm can be implemented by iteratively solving

. : dJ
s+1 _ pv __
PH =P _¢ (dP,,) (3.88)

for the optimal P,.
For proper controllers, we will assume for simplicity that C = [I 0],s0 Y = [ (; ] and

the expression for E;(s) reduces to
E(s) = Ko(sI — A,)" (VG + BoPoGh) (3.89)

where A, is given by (3.27), K; = KoY, V is defined in (3.17), By = YTB, and G, = CG.
The necessary conditions then take the form

A.Z‘Qr + er‘ir + K2TK2 ~= 0 .
ArPr + PrAr + (VG + BOPOGI)(VG + BOPOGI)T

ALr+ LA +P. =0 (3.50)
A,T-‘Mr + MrAr + Q2 =0
and
:%f' = 2BT(Q. M, + L, P,)JAT, + 2BTM,(VG + By P,G1)GT = 0. (3.91)
0

The structure of (3.91) allows the use of the steepest descent method, with Py adjusted
via (3.88), as well as the use of the Riccati equation based algorithm when (G,GT)-! exists.

The next iterate for P, is then given by
Pg*! = —(B3 M;Bo) ™' (B (Q: M; + L P)) AT, + By M{VGGT|(GiG) ™. (3.92)

3.5 Disturbance Rejection using the FH Norm and Projective
Controllers

3.5.1 Problem formulation

In some cases, it may be important to consider directly disturbance rejection with respect

to G(s), where G(s) is the closed-loop transfer function of the system using proper or strictly
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proper projective controllers. It is, however, observed from the parameterization of the
projective controllers that the closed-loop system is a non-linear (quadratic) function of
the free parameter matrix Py. Thus to simplify the computational issues, and reduce in the
design phase the system representation to simplest form, we seek in this section a reduction to
LIFP (linear-in-the-free-parameters) representation of the closed loop system. We will do so
in the decentralized setting where a number of decentralized low-order projective controllers
is used to retain by joint action a selected invariant subspace. In the decentralized case,
however, even the residual dynamics exhibits a nonlinear dependence on the free design
parameters Py,..., P, where q is the number of decentralized control channels and P; is the
free parameter matrix parameterizing the i-th controller. Thus, in the decentralized case,
it is even more significant to reduce the system to the LIFP representation. We therefore
develop the LIFP representation here for the decentralized control problem, which reduces
to the centralized problem when ¢ = 1.

Consider the decentralized system of Figure 3.4. The state space description of this

system can be written as follows:

z = Az + Byus + Bouy; + Guw

= Ciz
w o s (3.93)
ye = Hz.

where z € R™, u;,u; € RM, y,, y2¢ IR, yelR®, and welRI. Let the dynamic controllers have

the structure

& = Hi&i+ Dy

up = —Ngé—- Ky, i=1,2. (3.94)
where ¢ € IRP, i = 1,2, and define the extended system as
j’e = Aeze + Bleul + B2eu2 + Gew
YVie = Clexc
Y2 = C2eze (395)
Yee = He-re
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Ci(s)

)

3

Cg(s)

Figure 3.4: Decentralized system.

where )
A 0 0 B, B,
Ac = chl Hl 0 3 Ble = 0 ,Bge = 0
| D,C; 0 Hp 0 0
— Cl 0 0 - C2 0 0
Cle - ' o I O]ac'a‘c—[ 0 0 I] (3'96)
G. = 0 |,H.=[H 0 0]
| 0
The goal is to determine {H,, D1, Ny, Kn} and {Hz, D3, Ny3, Ka2} to achieve certain per- .
formance and disturbance rejection goals.
It has been shown (34] that if
u=—Koz (3.97)
is a stable feedback control producing the closed-loop system
z = Fz+Guw
v = Hz (3.98)
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with F having the Jordan decomposition

Aryp 0 n(r
F(Zr4p zc] = [Tr4p z] [ 0 ' A, ] y Xe4p€E ( ), (3.99)

then there exist dynamic controllers of the form (3.94) such that the resulting closed-loop
system retains all eigenvalues in A,,, together with the associated invariant spaces. In fact,

the entire family of such controllers has been parameterized [34] as follows:

H" = W,.-I?;W;-l, H.' = Ap" + P{F{zéo.', q" = 1,2

D; = WyD;, Di=PF -HP, i=1,2
(3.100)

Ky = K,— NguP;, i1=1,2

Ny = NaW;', Ngu=KiBi, i=1,2
Here P;, i = 1,2 are free parameter matrices of dimension p x r, the presence of Wp.- implies
the invariance to similarity transformations, while A,, A, are partitions of the Jordan form
Ar4p and Fi,, B{;, F¥, K., Ny and K}, = 1,2 are known quantities determined directly
by the reference solution F and its eigenvectors, assuming for each ¢ that the system has
transformed into the representation where C; = [/, 0]. For details see (34].

If transient performance is of primary concern, then the reference state-feedback solution
can be determined by solving an LQ optimization problem, and projective controls will
then retain in the closed-loop system the dominant poles of the reference solution that
define acceptable transient response. The free parameters are then determined by solving
an auxiliary problem to shape the residual dyrxmics.

If disturbance rejection and ¢ransient response are of concern, then the reference solution
can be determined to minimize the H, norm. The Hy-optimal state-feedback control is
given again by (3.6) where M > 0 is the solution of the ARE (3.7) with B = [B, B,), and v

is the minimal value for which M > 0 solving (3.6) exists. The use of (3.6) guarantees here
1Ge(8)lloo = |H(sI = F)™'Glloo < 7 (3.101)

with both control channels using state-feedback controls. Projective controls will now fix

the dominant poles and associated eigenvectors of the system at locations determined by

67




the reference solution, while the free parameters P;, P, are to be used to shape the residual
dynamics to achieve disturbance rejection. To simplify the disturbance rejection problem
in applying the FH-norm minimization approach, the transformation developed in [34] that

reduces the closed-loop to a linear-in-the-free-parameters (LIFP) form will be applied.

3.5.2 Transformation to the LIFP form

Assuming, without loss of generality, that W,,‘- =1, ng = I, the closed-loop system

becomes
ZTe = AceZe + Gow (3.102)
Yee = H.z., (3.103)
with
Ag —~B;Na ) —B;Noaz
A, = (PII‘,,.l - H1P1)01 Apl + PlFlzBé 0 3 (3104)
(P,F? - H,P,)C, 0 Ap2 + P, FLB?
where
A=A+ BiNyP, + BNy P, A.= A - B K,,C, — B:K,2C;. (3.105)
Now apply the transformation #; = T'%, where
i I, 0 0 3 I, 0 0
T=|\pCi I, 0|, T'=|-PC, I, 0 |. (3.106)
PgCg 0 ng -—PgCg 0 Ipz

The system (3.103) becomes

533 = A 5’:3+G,w

G = Hi, (3.107)
where
A =T"'4.T, G.= T-'G., H.=H.T. (3.108)
The expression for A, can thus be derived to be
. Ac —BlN,ﬂ Bthﬂ
Ae = P E, A, + PGn PGy, J
P,E, PGy, Ap2 + PGy, (3.109)

= /ie + Blepzéle + Bzepzéze
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where

Ble =

Py
Il

0 A, 0

A. —BiNy —-B;Ng;
0 0 A

0] 0
Ipl B2e = 0 y
0 I, (3.110)

Cie = [E1 Gu Gr2ly, Ci=[E: Gu G2

withi
E1 = F,‘Cl - ClAc, Eg = F,?Cg - CgAc
Gun = F4By+CiBiNy, Gia=C1B;Ny (3.111)
Gn = CiBiNa, Gy = F4B3 + CaB;Ny,
while
) I, 0 0 G
G. = T'G.=|-PC1y I, 0 0
~PC;, 0 I, 0
G (3.112)
= -P,C\G
-P,CG
= Gs - B,,HC;G - BZQPQCQG
and
H. =HT =H.. (3.113)

Thus, when the similarity transformation is applied to the system, the expression derived for
Ace, G., and H, all exhibit a linear dependence on the free parameter matrices P, and P,.
(H, is in fact independent of the free parameter matrices.) This linear dependence can now
be utilized to determine suitable P, and P; (and thus the dynamic controllers) to achieve

disturbance rejection by minimizing the FH norm.

3.5.3 FH-norm minimization

This minimization now reduces to the minimization of J, = Trace P.Q,. subject to the

following constraints:

|
=]

ATQ.+Q.A., + HTH,

A.P. + PAT + G.GT (3.114)

|
e
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By defining the Lagrange multipliers, L, = LT, M, = M7, the problem can again be reduced
to an unconstrained minimization and since A.., G., and H, are all linear functions of the
free parameters; only minor changes are introduced in the usual necessary conditions. These

can now be written as follows:

3J/oP. = ATM,+M.A.+Q.=0

9J/9Q.

A.L.+LATL+P. =0

aJ/aLe = Ang + QeA-ce + I.{Z‘f{e =0
(3.115)
dJ/oM, = A.P.+P.AL+G.GT =0

dJ/dP, = 2BIL(M.P.+ Q.L.)CL —2BT M.G.GTCT

The feasible direction algorithm can now be applied. Initially, the free parameter ma-
trices, P, and P,, are set to zero, (although arbitrary values can be used). If the resulting

closed-loop system matrix, A, given by (3.104) has unstable eigenvalues, J, is not defined.

In this case, an embedding parameter, p, is chosen such that
p > Max;(Re);(A)), (3.116)

and A, modified to A, — pl. If the resulting A., is stable, the embedding parameter is
then zero. This leads to a modified extension J,, with an expanded region of definition
encompassing the initial P, P;.

In the feasible direction algorithm, the first four equations in (3.115) are selved for M.,
L., Q. and P,. These are then used in the last two equations to calculate a gradicnt direction

for the next iterate of P, and P, with

Pi*' = Pi_sdJ/8P,
Pl = P,—s8J/3P, (3.117)

where s is the step size solving the one dimensional minimization problem

. aJ aJ
s = a.rg lgg J“(Pl - ha—ﬂ,Pg - h-a?;) (3118)
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thus guaranteeing convergence to a local minimum. Using the embedding parameter method,
the maximal eigenvalue of A, can be successively moved towards the imaginary axis. The
parameter s can then be decreased and ultimately when the system is stabilized s can be
set to zero resulting in the minimization of the original criterion J.. However, it may not
be possible to move all unstable eigenvalues into the left-half plane without simultaneously
forcing previously stable eigenvalues into the right-half plane. If this situation occurs, the
order of the dynamic controller must be increased to provide additional design freedom
needed to stablize the system. Expanding controllers if necessary is simple in view of the way
controllers are parameterized (see [34]) and expanded free parameter matrices can utilize the
latest iterates of P, and P, to simply continue the combined stabilization and optimization
process. This resulting algorithm applicable to an arbitrary number of controllers can be

summarized as follows:
1) Initialize P! =, i = 1,...,k.

2) Evaluate the resulting closed-loop system matrix A.., based on the current iterative value

of P,,i=1,...,k. If A_ is stable, proceed to step 5.
3) Choose an embedding parameter, p, such that p > Max;(ReA;(A)).

4) Solve the associated minimization problem recursively until p can be set equal to zero.
(If A.. cannot be stabilized, increase the order of the dynamic controllers to be used

and start the algorithm over.)

5) Solve for P., Q., L. and M, from the necessary conditions for a minimum Trace P.Q..

6) Use the partial derivative equations with respect to the free parameter matrices to

calculate gradient directions.
7) Set P! +1 = AP; + P/ where AP, = —s8J/8P.,i = 1,...,k.

8) Repeat until P;, i = 1,...,k converge to their optimal values.
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9) Use calculated P;, : = 1,...,k, to determine controller parameters based on the param-

eterization given by (3.100) to complete the controller design.

It is noted that in view of (3.109)-(3.113) the last two necessary conditions in (3.115) are
linear in P;, P;. However, they represent coupled Sylvester equations, and so do not reduce
to a computationally attractive Riccati-based algorithm. In the centralized case however,

one can use the Riccati-based algorithm provided (CGGTCT)™! exits.

3.5.4 Example

In order to illustrate the approach, consider a seventh-order system with two decentralized
dynamic controllers to be designed so as to minimize the effects of a disturbance input on the

regulated outputs. A system of the form (3.93) will be used, characterized by the following

matrices:

[—2 1 0 0 -1 1 0] [ 0] [ 0]

-2 -3 1 0 0 1 1 0 0

-2 -3 -2 0 -1 -1 -1 1 0

A = 0 0 1 -3 -1 0 0| B=]|0 B,=1|0

-1 0 1 0-2 1 0 0 0

0 2 -1 -1 =2 1 1 0 0

| -1 0 -3 0 -2 -2 —4 | 0 |1

3 e

Q = diag {100,10,100,0,0,0,0}, Ry = Ry = 1.

2




The open-loop system is unstable, with the spectrum,
A(A) = {-2.80 £ j2.41, —4.48,-3.71, .83 — .68, —1.26}.

The reference system (here 2n LQ solution, i.e., ¥ — o00) is characterized by the optimal
spectrum,

A(F) = {-10.09, —1.62 + j1.63, -1.15, —4.5, —3.10 + j.87}.

Since in this problem r, = r; = 2, two modes of the reference solution can be retained
with static projective controls. In addition, by using two first-order dynamic controllers, one

additional mode can be retained. The dominant modes are chosen for retention; thus,

A, = [ —1.62 +;1.63 0

0 _162-j1.63 | A»=[-115)

The initial choices for P, and P, are
A=[00, P=[0 0
producing the closed-loop spectrum,
A(Ac) = {—3.65 + j2.16,—3.89, .36, —1.62 + j1.64, —.92, —1.15, —1.15}.

Note that this choice of P, and P; fails to stabilize the resulting closed loop system. Con-
sequently, the embedding parameter method must be used initially until a stable A, is
achieved, or it is determined that the order of the dynamic controllers must be increased.
For the example at hand, first-order controllers did produce a stable system; thus, the order
did not need to be increased.

The feasible direction algorithm is then employed to yield the optimum parameters for

P, and P, for disturbance minimization. These optimal values are found to be

[-2.41 0.71)
[-3.65 1.58]

Py
P,

with an optimal value of the cost criterion of
J = Trace P.Q. = 1.430E~2.
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(Notice that for the initial choice, J = oo, since the system was unstable.) The closed loop

spectrum, A, produced by the free parameter matrices is now
A(A.) = {~5.77 + 3.365, —.58 £ 1.72j, —4.26, —3.42, —1.62 + 1.63j,—1.15}.

Once P, and P; are determined, the controller parameters can then be determined from

(3.100) to be

H, = =193, H, = -7.92

Dy = [-548 —458], D, =[-25.17 17.05]
Ko = [-343 —195), K =[-3417 20.48]
Nay =

-0.95 Ny, = -8.87,
thus completing the design. '

3.6 A design example

We finally present a realistic design example to illustrate the design procedures developed
in these two sections. The structure considered is a 45 foot lattice-type, light-weight (5 1bs.),
flexible beam with fixed base and free tip shown in Figure 3.5. The system is modeled by a
40th order state space model.

The control u € IR? consists of torques applied at the base of the structure about the z
and y axes. The disturbance w € IR? is generated by an z — y translation applied to the
base where the z-axis is taken to be the axis of the cruciform. Measurements of the system
y € IR® are obtained from an ¢ — y axis gyro and accelerometer sensors located at the tip
and base of the structure. The controlled output z € IR* is the position measurement at the
tip and base of the s